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Structural stability of simple classical fluids: Universal properties
of the Lyapunov-exponent measure
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A threshold for the stability of the solution of integral equations for the pair correlation function of a
classical fluid can be determined from the Floquet matrix for the iterative form of the integral equation.
Correspondingly, a measure of the structural stability of the fluid, analogous to the Lindemann ratio for a solid,
is provided by the Lyapunov exponentl that is related to the perturbed dynamics. The behavior ofl as a
function of density, temperature, interatomic potential, and closure relations for the integral equation, is
analyzed and discussed. In analogy with the Lindemann parameter, we find—for the hypernetted-chain-type
closures—thatl(T/Tinst) is ‘‘quasiuniversal,’’ i.e., very weakly dependent on the interaction potential, up to
a temperatureT/Tinst;5, whereTinst is the stability-threshold temperature. We show how this result connects
the Lyapunov exponent measure of the pair structure with the equation of state of the fluid.

PACS number~s!: 05.70.Ce, 05.70.Fh, 61.20.Gy
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I. INTRODUCTION

The semiempirical melting criterion proposed by Lind
mann in 1910 states that for the three-dimensional~3D! mon-
atomic crystal, on average, the ratio of the root-mean-squ
~rms! displacement of the atoms from their equilibrium la
tice sites (̂x2&)1/2 to the nearest neighbor distanced is ap-
proximately a universal numberd5(^x2&)1/2/d5dL.0.15
@1,2#. Lindemann’s ratiod is a measure of the structura
stability of the solid in the sense that a small value ofd is
consistent with the standard picture of a solid, i.e., a sys
of localized atoms, confined around their equilibrium latti
positions by a ‘‘cage’’ made by their neighbors. As the te
perature increases or the density decreases,d increases until
it gets so large (d*dL) that localization is destroyed, and th
original picture of an ordered solid is no longerself-
consistent. The ‘‘critical’’ value dL marks the limit of struc-
tural stability of the solid, beyond which another descripti
of the structure is called for. Lindemann’s ratio is an e
ample of a measure of the structure which can be use
define a stability limit, because it addresses a feature th
used in the buildup of the structure itself. It is valid for
variety of real and model crystals, quite independently of
specific atomic interactions: Lindemann’s limit correlat
well with the thermodynamic stability threshold of a soli
namely, with the melting line@1,2#.

In two dimensions~2D!, the rms displacement of particle
in a crystal diverges logarithmically with the system siz
However, if written in terms of the Debye temperature, t
Lindemann’s criterion can be empirically extended also
2D. Similarly, the Ross generalization@3# of Lindemann’s
criterion, using the value of the thermal free energy, can
applied ~with another threshold value! also in 2D @4#. The
defect-mediated Kosterlitz-Thouless-Halperin-Nelso
Young ~KTHNY ! theory of melting in 2D yields a
Lindemann-type formula without any adjustable constant@1#.
PRE 611063-651X/2000/61~4!/4090~5!/$15.00
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In three dimensions~3D!, Hansen and Verlet considere
the height of the first peak of the structure factorSmax as an
analog of Lindemann’s criterion on the fluid side, and fou
that the valueSmax.2.85 correlates well with the freezin
density of simple fluids@5#. The Hansen-Verlet rule, with a
larger value forSmax, can be used to estimate the freezi
line of 2D fluids as well. The ‘‘residual multiparticle en
tropy’’ ~RMPE! also provides a measure of the fluid stru
ture which correlates well with the freezing line@6#. This
criterion can be successfully applied also in 2D@7,8#.

Using the concept of an effective hard-sphere diame
~e.g., in the context of variational thermodynamic perturb
tion theories!, melting and freezing criteria valid for hard
core particles can be extended to fluids with continuous
tentials in both 3D and 2D@4,9#. In particular, with the
advent of the approximation of universality of the bridg
functions@10#, a hard-sphere freezing criterion was propos
in terms of the value of the bridge function at zero sepa
tion, b(r 50) @4#. It so happens that the freezing rule,b(r
50).50, applies equally well in both 2D and 3D. A ‘‘dy
namical’’ criterion for the freezing of colloidal systems
which is valid also in 2D, was proposed by Lo¨wen, Palberg,
and Simon@11#. Recently, it was found that hard-core fluid
exhibit a structural precursor of the freezing transition, wh
manifests itself through a shoulder which emerges in the s
ond peak of the radial distribution function@1#. It is not
known if such a precursor holds, in general, for monatom
fluids.

Other freezing criteria arise from the properties of so
tions of integral equations for the pair distribution functio
of the fluid @12#, or from the instability of the iterative solu
tions of such equations@13#. In particular, the stability limit
of the hypernetted-chain~HNC! equation@14,15# with re-
spect to its defining diagrammatic iteration loop, falls clo
to the freezing density for a large variety of interaction p
potentials, in both 2D and 3D@13#. Subsequently, a more
4090 © 2000 The American Physical Society
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general analysis revealed that equal results~to within the
numerical uncertainty of the calculations! for the threshold
density are obtained through a study of the Floquet ma
for the iterative form of the integral equation used for t
calculation of the pair structure@16#. More specifically, the
Lyapunov exponent related to the dynamics correspondin
the diagrammatic iteration process provides a measure o
pair correlation function of the fluid with a critical~thresh-
old! value signaling the stability limit densityr inst . Such
critical values agree with those obtained by direct obser
tion of the iteration process.

The Lindemann ratio has a rather direct relation to
structure and thermodynamics of the solid, so that the m
vation for its definition and the physical meaning of its a
plication are clear. On the other hand, the precise phys
meaning of the various measures introduced for the liq
structure, and the reason why their critical values correlat
well with freezing, are not well understood, and deserve f
ther study. Among these, the criterion based on
Lyapunov-exponent measure of the fluid structure seem
be the closest in spirit to Lindemann’s measure for the so
since it addresses theself-consistencyof a process by which
the typical structure~namely, the pair correlation, in the flui
case! is obtained.

In this paper we continue our study of the behavior of
Lyapunov exponent as a function of density, temperatu
interaction potential, and closure relations for the integ
equation. In Sec. II we recall the definition of the Lyapuno
exponent measure of the structure from our previous w
@16#. New results are presented in Sec. III which are a
lyzed and discussed in Sec. IV. In particular, we find
HNC-type closures thatl(T/Tinst) is nearly ‘‘universal’’
when plotted as a function of the ratioT/Tinst , whereTinst is
the stability-threshold temperature. When compared wit
recent density-functional-theory~DFT! analysis of the equa
tion of state of simple classical systems@17#, this ‘‘univer-
sality’’ manifestly demonstrates an intimate connection
the Lyapunov-exponent measure of the fluid pair struct
with the thermal part of the contribution of the interactions
the equation of state.

II. LYAPUNOV-EXPONENT STABILITY MEASURE

The nonlinear integral equations that are obtained
supplementing the Ornstein-Zernike~OZ! relation with some
appropriate closure~viz., an independent relation betwee
the total and direct correlation functions@14#!, have the form

f ~r !5K„r , f ~r !…1E K„ur2su, f ~ ur2su!…f ~s!ds, ~1!

where f (r ) typically denotes the total correlation functio
h(r ) andK is a kernel that depends on the approximate c
sure adopted forc(r ). Such integral equations can be writte
in the form

f ~r !5A f~r !, ~2!

where f (r )PS describes the particle distribution of the sy
tem investigated,S is a set of a metric space, andA:S→S is
an operator mappingSonto itself. When applying the simpl
ix
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iterative method to Eq.~2!, one generates, starting from
some initial valuef 0, successive approximations to the sol
tion through the mapping

f n115A fn . ~3!

If the sequence of successive approximations$ f n% converges
towards a valuef * , then f * is a fixed point for the operato
A, i.e., a solution of Eq.~2!: f * 5A f* . The operatorA de-
scribes how the values assumed byf over the whole system
are to be ‘‘processed’’ in order to determine the value off at
a given point. As suggested by the fixed-point form of E
~2!, in a state of thermodynamic equilibrium a condition
‘‘detailed balance’’ holds between the local value off and
that resulting from the resummed contribution of indire
correlations at intermediate points of the system. This sor
internal balance between the local and global properties
the function, which ultimately determines the density profi
of the fluid, can be used to define a ‘‘measure’’ of the p
structure with a related definition of stability threshold.

In fact @16#, let us imagine to perturb theequilibrium
correlation functionf * (r ) by an arbitrary perturbationd(r ).
The perturbed,nonequilibrium correlation function f (r )
5 f * (r )1d(r ) is processed by the operatorA which, to first
order in the perturbation, yieldsMd(r ), where the matrix
M5(]A/] f )u f* is the Floquet matrix acting on the perturb
tion vector ~in numerical applicationsr is represented by a
grid of N points, the functionf is an N vector andA is a
f-dependentN3N matrix! @18#. In turn, Md can now be
considered as a perturbation which, when processed by
system, gives origin to a new perturbationMMd, and so on.
The successive iterations of this procedure generate aficti-
tious dynamicsconsisting of repeated applications of the Fl
quet matrix to the initial perturbationd0, which can be rep-
resented as follows:

idni
id0i 5 )

i 50

n21

Si , ~4!

where

Sn5
iMdn~r !i

idn~r !i , ~5!

and i f (r )i5A(( i 51
N ) f 2(r i) is the norm of a functionf de-

fined over a mesh ofN points. Assuming that the norm of th
perturbation depends~as long as it remains infinitesimal! ex-
ponentially on the number of iterations, i.e.,idn(r )i
5id0(r )i2ln, wherel is the Lyapunov exponent related t
the perturbation dynamics, one can write the average ex
nential stretching of initially nearby points as

l5 lim
n→`

1

n
log2S )

i 50

n21

Si D . ~6!

The actual number of iterations after whichl reaches its
saturation value depends on the density, ranging from a
tens at low density to a few hundreds near the instabi
point. Though, in principle, the Lyapunov exponent depen
on the initial perturbationd0(r ), we found@16# that wildly
different forms of the initial perturbation lead to essentia
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identical values ofl. Consequently, this quantity provides
measure of the stability of the solution, and thus of the s
bility of the fluid structure as defined through the integ
equation.

III. RESULTS

We calculatedl for a variety of pair potentials@hard-
sphere, inverse-power, Yukawa, Lennard-Jones~LJ!#, and
various closures of the OZ integral equation@HNC, Percus-
Yevick ~PY!, Martynov-Sarkisov~MS!# @14,15#. In view of
the rather intensive computaions involved we focused at
tion on the HNC and PY closures, and on the inverse po
and Yukawa as two one parameter families of potenti
with only exploratory calculations for the LJ system and t
MS closure. For the inverse-power potentials,

fs~r !5eS s

r D s

, ~7!

as well as for the LJ potential,

fLJ~r !54eF S s

r D 12

2S s

r D 6G , ~8!

we user* 5rs3 andT* 5kBT/e as reduced variables, an
for hard spheres (s5`), the packing fraction h
5(p/6)rs3. If one measures distances in units of t
Wigner-Seitz radiusaWS5(3/4pr)1/3, the inverse-power po
tentials can be written in the form

fs~r !

kBT
5

G

r s
, ~9!

whereG5(e/kBT)(s/aWS)
s5@(4p/3)r* #s/3/T* is a dimen-

sionless coupling parameter. Correspondingly, the Yuka
potential takes the form

fY~r !

kBT
5

G

r
e2ar . ~10!

The zero-screening case (a50) obviously reduces to the
Coulomb, inverse-power potential (s51).

FIG. 1. Ratio of the instability densityr inst to the freezing den-
sity r f for inverse-power potentials, within the HNC~dots!, PY
~circles!, and MS~squares! approximations.
-
l

n-
er
s,

a

The ratio of the instability density to the freezing densi
r inst /r f is plotted in Fig. 1 for the inverse-power potentia
as calculated within the PY and HNC equations. The va
assumed byr inst /r f for the PY approximation in the Cou
lomb limit is out of scale, being close to 16. We note that,
variance with the PY closure, the value ofr inst found in the
HNC approximation moderately departs from the freez
density in the Coulomb limit only. In this respect, th
marked failure of the PY approximation as the potential g
softer and softer looks more dramatic than the loss of ac
racy shown by the same approximation in relation to
more standard structural and thermodynamic properties
the model. We conclude that the proposed estimate of
instability threshold reveals as a more stringent test of
physical ‘‘soundness’’ of the closure than its very capacity
account for a reliable representation of the pair structure
the fluid. As can be seen in Fig. 2 for the LJ system atT*
52.74, the various closures’ results forr inst* are rather close
to r f* 51.113, as expected from their results for the ste
inverse power potentials, with the HNC and MS closur
behaving similarly.

Figures 3 and 4 show the behavior of the Lyapunov

FIG. 3. Lyapunov exponent as function ofG/G inst for inverse
power potentials within the HNC approximation. Symbols: triang
(s51), dots (s54), circles (s56), squares (s512), diamonds
~hard-spheres!.

FIG. 2. Lyapunov exponent as function of the reduced dens
for the Lennard-Jones potential atT52.74 within the HNC~dots!,
PY ~circles!, and MS~squares! approximations.
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ponent, plotted as a function of the ratioG/G inst , for the
inverse-power and Yukawa potentials, respectively, in
HNC approximation. As the density increases at fixed te
perature,l becomes less and less negative, thus signalin
less efficacious damping of the perturbation~see Sec. II!.
The slope of the curve, initially rather steep, decreases
idly but smoothly with the density in such a way that it mig
appear that the loss of stability of the solution~corresponding
to the vanishing ofl), would occur only asymptotically
Instead, at a densityrc slightly smaller thanr inst , the slope
of the curve changes abruptly andl eventually vanishes fo
r5r inst . As is better seen from the insets of Figs. 3 and
two distinct branches meet atrc with a different slope. In-
deed, within the limits of numerical accuracy of the calcu
tion, the derivativedl/dr has a discontinuity atrc whose
value depends on both the potential and the integral clos
However, the general behavior, which was originally o
served for hard spheres@16#, remains the same.

IV. ANALYSIS AND DISCUSSION

From the results obtained the HNC emerges as the o
approximate closure considered here which behaves ov
properly for all potentials. The most important result of th
work is the finding for the HNC closure~Figs. 3 and 4! that
as function of the ratioT/Tinst , whereTinst is the stability-
threshold temperature, the Lyapunov exponentl(T/Tinst) is
quasiuniversal, i.e., very weakly dependent on the interac
potential up toT/Tinst;5.

In the case of the Lindemann parameter, it is easy to sh
for a harmonic solid that

d}S T

K~r! D
1/2

, ~11!

whereK(r) is the force constant. Thus, the ratio ofd to its
threshold value~at same density! is given by

d

dL
5~T/Tinst!

1/2, ~12!

FIG. 4. Lyapunov exponent as function ofG/G inst for Yukawa
potentials within the HNC approximation. Symbols: trianglesa
50), dots (a51.83), circles (a53.34).
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which is independent of the pair potential. This reflects
fact that the thermal potential energy~on top of the Made-
lung, static lattice, energy! for a harmonic solid is given by

uth5
3

2
kBT5

1

2
K~r!d2 ~13!

so that the ratio of its value to that at threshold, at const
density, is universal

uth

uth , inst
5T/Tinst . ~14!

Now, our results for the inverse power potentials a
Yukawas show that to good approximation

l5 f ~G/G inst!5 f ~Tinst /T! ~15!

is a universal function ofT/Tinst , independent of potential
for both the HNC approximate closure and other related c
sures, with slightly different values for the functionf. It can
be shown from the equation of state for these fluids t
@19,18# if we subtract from the potential energy afluid Made-
lung term in order to obtain a thermal potential energyuth ,
we obtain a nearly universal dependence of the ratioTinst /T,

uth

uth , inst
5g~G/G inst!5g~Tinst /T!, ~16!

for both the HNC approximation and numerical simulati
results, with slightly different functionsg. Specifically
@18,19#

g~0.1&x&1!.x1/2 ~HNC!,

g~0.1&x&1!.x2/5 ~simulation!. ~17!

Thus, similarly to the Lindemann ratio, the Lyapuno
exponent measure exhibits a nearly universal behavior, w
expressed as function of the ratio of the temperature to
threshold temeperature, and this scaling property is sha
with the thermal potential energy. On the basis of t
fundamental-measure free energy functional for hard sph
and thermodynamic perturbation theory, a unified analy
description of classical bulk solids and fluids was obtain
recently @18#, predicting correctly major features of the
equations of state and freezing parameters as obtaine
simulations. The fundamentally different fluid and sol
asymptotic high density expansions for the potential ener
featuring a static-lattice Madelung term and the harmo
3
2 kBT correction, on one hand, and a fluid Madelung ene
with a ;T3/5 thermal energy correction, on the other,both
originate from the same singularityin the hard-spherefree
energy functional. A similar asymptotic behavior, with th
same fluid Madelung energy but with a different expone
for the thermal energy, is exhibited by the HNC approxim
tion @19#. It appears from these studies@19,18# that the fluid
structure for repulsive potentials can be represented by
asymptotic high-density expansion, and the scaling relati
in terms ofG/G inst are manifestations of this property. Fro
this point of view, the Lyapunov-exponent measure, ev
though not directly measuring a fluid structure parame
~like the height of the first peak of the structure factor! can
nevertheless be related to the asymptotic expansion.
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